Cellular communication is an umbrella term used in biology and more in depth in biophysics, biochemistry and biosemiotics to identify different types of communication methods between living cellulites. Some of the methods include cell signaling among others. This process allows millions of cells to communicate and work together to perform important bodily processes that are necessary for survival. Both multicellular and unicellular organisms heavily rely on cell-cell communication.[1]Reception occurs when the target cell (any cell with a receptor protein specific to the signal molecule) detects a signal, usually in the form of a small, water-soluble molecule, via binding to a receptor protein. Reception is the target cell’s detection of a signal via binding of a signaling molecule, or ligand. Receptor proteins span the cell’s plasma membrane and provide specific sites for water-soluble signaling molecules to bind to. These trans-membrane receptors are able to transmit information from outside the cell to the inside because they change conformation when a specific ligand binds to it. By looking at three major types of receptors, (G protein coupled receptors, receptor tyrosine kinases, and ion channel receptors) scientists are able to see how trans-membrane receptors contribute to the complexity of cells and the work that these cells do. Cell surface receptors play an essential role in the biological systems of single- and multi-cellular organisms and malfunction or damage to these proteins is associated with cancer, heart disease, and asthma.[2]When binding to the signaling molecule, the receptor protein changes in some way and starts the process of transduction. A specific cellular response is the result of the newly converted signal. Usually, transduction requires a series of changes in a sequence of different molecules (called a signal transduction pathway) but sometimes can occur in a single step. The molecules that compose these pathways are known as relay molecules. The multistep process of the transduction stage is often composed of the activation of proteins by addition or removal of phosphate groups or even the release of other small molecules or ions that can act as messengers. The amplifying of a signal is one of the benefits to this multiple step sequence. Other benefits include more opportunities for regulation than simpler systems do and the fine- tuning of the response, in both unicellular and multicellular organism.[3]A specific cellular response is the result of the transduced signal in the final stage of cell signaling. This response can essentially be any cellular activity that is present in a body. It can spur the rearrangement of the cytoskeleton, or even as catalysis by an enzyme. These three steps of cell signaling all ensure that the right cells are behaving as told, at the right time, and in synchronization with other cells and their own functions within the organism. At the end, the end of a signal pathway leads to the regulation of a cellular activity. This response can take place in the nucleus or in the cytoplasm of the cell. A majority of signaling pathways control protein synthesis by turning certain genes on and off in the nucleus. [4]

(Visited 1 times, 1 visits today)